

Fonds Wetenschappelijk Onderzoek Research Foundation - Flanders

Passivation of Si and CIGS surfaces

Vetenskapsrådet

Bart Vermang et al.

Part I: AI_2O_3 passivation for Si PERx

• p-type PERL ≥ 20.5 %

spire invent achieve

- n-type PERT ≥ 21.5 %
- Rear passivation stack = ALD AI_2O_3 (+ capping)

L. Tous et al., Prog. Photovolt: Res. Appl. (2014) DOI: 10.1002/pip.2478

Part II: PERC meets CIGS - PercIGS

Interuniversity Micro-Electronics Centre (imec), Leuven, Belgium

A STATE

imec aspire invent achieve

24,400 m² of office space, laboratories, training facilities, and technical support rooms

200 mm clean room 300 mm clean room (450 mm ready) silicon PV pilot line

aspire invent achieve

state-of-the-art laboratories for solar cell research, research on wireless communication, biomedical research and long-term brain research

Imec's research structure

• Si PV, OPV, TF PV (CZTS, a-Si), Perovskites, multi-junctions ...

Part I - outline

- Why Al₂O₃?
- Spatial atomic layer deposition (ALD) of Al₂O₃
- Thermal stability
- p-type PERL
- Illumination independency
- n-type PERT and Al₂O₃ contact passivation / doping

J. Vac. Sci. Technol. A (2012) DOI: 10.1116/1.4728205 Prog. Photovolt: Res. Appl. (2011) DOI: 10.1002/pip.1092 38th IEEE PVSC (2012) DOI: 10.1109/PVSC.2012.6317802 Sol. Energy Mater. Sol. Cells (2012) DOI: 10.1016/j.solmat.2012.01.032 Prog. Photovolt: Res. Appl. (2012) DOI: 10.1002/pip.2196 Phys. Status Solidi RRL (2012) DOI: 10.1002/pssr.201206154 Prog. Photovolt: Res. Appl. (2014) DOI: 10.1002/pip.2478 Energy Procedia (2014) DOI: 10.1016/j.egypro.2014.08.041 Phys. Status Solidi (a) (2013) DOI: 10.1002/pssa.201329058

- Chemical passivation Low D_{it}
- Field effect passivation $Q_f < 0$

$$U_{surface} = \int_{E_V}^{E_C} \frac{v_{th}(n_s p_s - n_i^2)}{\frac{n_s + n_1(E_{it})}{\sigma_p(E_{it})} + \frac{p_s + p_1(E_{it})}{\sigma_n(E_{it})}} D_{it}(E_{it}) dE_{it}$$

Why Al_2O_3 ?

G. Dingemans et al., J. Vac. Sci. Technol. A (2012) DOI: 10.1116/1.4728205

Spatial ALD Al₂O₃

- Atmospheric pressure
- Increased throughput and TMA efficiency compared to standard "temporal" ALD

B. Vermang et al., Prog. Photovolt: Res. Appl. (2011) DOI: 10.1002/pip.1092

EP 2 482 328, TW 2012 50839, US 2012 192943, JP 2012 160732

Thermal stability (blistering)

- Thick or capped (ALD) Al₂O₃ films blister upon annealing
- Blisters lead to additional point contacts

mec

B. Vermang et al., 38th IEEE PVSC (2012) DOI: 10.1109/PVSC.2012.6317802
B. Vermang et al., Sol. Energy Mater. Sol. Cells (2012) DOI: 10.1016/j.solmat.2012.01.032

Thermal stability (blistering)

- Combination of (tensile) stress and outgassing (effusion of H₂, H₂O)
- Solution: thin ALD films and annealing before capping

B. Vermang et al., 38th IEEE PVSC (2012) DOI: 10.1109/PVSC.2012.6317802 B. Vermang et al., Sol. Energy Mater. Sol. Cells (2012) DOI: 10.1016/j.solmat.2012.01.032 EP 2 398 044, TW 2012 06857, US 2011 0308603, JP 2012 039088 EP 2 533 305, TW 2013 20188, US 2012 0306058, JP 2012 253356

p-type PERL

- Rear pass. stack = spatial ALD AI_2O_3 (≤ 10 nm) + annealing + SiN_x
- Best cell 20.5 %

mec

- V_{OC} = 665 mV; J_{SC} = 38.6 mA/cm²; FF = 79.9 %

• Imec's Si PV focus moved to n-type

Similar technologies: *Trina Solar Suntech Canadian Solar Ja Solar Hanwha Solar*

B. Vermang et al., Prog. Photovolt: Res. Appl. (2012) DOI: 10.1002/pip.2196 L. Tous et al., Prog. Photovolt: Res. Appl. (2014) DOI: 10.1002/pip.2478

Illumination independency

- $V_{OC}^{(n)} \rightarrow \text{pos./neg. charged surf. pass. } (S_{eff}, S.R.H.)$
- $J_{SC} \rightarrow parasitic shunting$

mec

- Rear passivation of p-type Si PERC =
 - Pos. charged dielectric → inversion = floating junction, constant loss of photo-generated e⁻ from the inverted region via the shunt
 - Neg. charged dielectric \rightarrow accumulation

positive charged dielectric stack

B. Vermang et al., Phys. Status Solidi RRL (2012) DOI: 10.1002/pssr.201206154

(%)

Illumination independency

- SiO₂ compared to Al₂O₃ rear passivated p-type Si PERC
 - Filters are used to reduce the light intensity < 100 %
- SiO₂ rear pass. p-Si PERC
 - Average efficiency up to 0.5 % (abs.) lower in low solar irradiation regions

B. Vermang et al., Phys. Status Solidi RRL (2012) DOI: 10.1002/pssr.201206154

incerta achieve

n-type PERT and contact pass. + doping

- Rear pass. stack = spatial ALD Al₂O₃ (≤ 10 nm) (+ ann.) + SiN_x
- Best cell 21.5 %
 - V_{OC} = 677 mV; J_{SC} = 39.1 mA/cm²; FF = 81.3 %
- Contact pass. of n⁺-Si & p⁺-doping by laser ablation of Al₂O₃/SiN_x

N-PERT

L. Tous et al., Prog. Photovolt: Res. Appl. (2014) DOI: 10.1002/pip.2478 J. Deckers et al., Energy Procedia (2014) DOI: 10.1016/j.egypro.2014.08.041 N.-P. Harder, Phys. Status Solidi (a) (2013) DOI: 10.1002/pssa.201329058

All of this is teamwork!

My promoter Jef Poortmans and all imec colleagues

Uppsala, Sweden

Ångström Solar Center, University of Uppsala

Ångström laboratiet / laboratory

- Group
 - Tunnfilmssolceller / Thin Film Solar Cells
- Department
 - Fasta Tillståndets Elektronik / Solid State Electronics

1 Ångström = 1 Å = 0.1 nm

Anders Jonas Ångström

From Wikipedia, the free encyclopedia

Anders Jonas Ångström ['an deş 'ju: nas 'on strøm] (13 August 1814, Lögdö, - 21 June 1874) was a Swedish physicist and one of the founders of the science of spectroscopy.^[1]

Contents [hide]
1 Biography
2 Honours
3 See also
4 Notes
5 References
6 Further reading

Biography [edit]

Anders Angstrom was born in Medelpad, he moved to, and was educated at Uppsala University, where in 1839 he became docent in physics. In 1842 he went to the Stockholm Observatory to gain experience in practical astronomical work, and the following year he was appointed keeper of the Uppsala Astronomical Observatory.

Becoming interested in terrestrial magnetism he made many observations of magnetic intensity and declination in various parts of Sweden, and was *charged* by the Stockholm Academy of Sciences with the task, not completed till shortly before his death, of working out the magnetic data obtained by the Swedish frigate "Eugénie" on her voyage around the world in 1851–1853.

In 1858, he succeeded Adolph Ferdinand Svanberg in the chair of physics at Uppsala. His most important work was concerned with the conduction of heat and with spectroscopy. In his optical researches, *Optiska Undersökningar*, presented to the Royal Swedish Academy of Sciences in 1853, he not only pointed out that the electric spark yields two superposed spectra, one from the metal of the electrode and the other from the gas in which it passes, but deduced from Leonhard Euler's theory of resonance that an incandescent gas emits luminous rays of the same refrangibility as those it can absorb. This statement, as Sir Edward Sabine remarked when awarding him the Rumford medal of the Royal Society in 1872, contains a fundamental principle of spectrum analysis, and though overlooked for a number of years it entitles him to rank as one of the founders of spectroscopy.

From 1861 onwards, he paid special attention to the solar spectrum. His combination of the spectroscope with photography for the study of the Solar System resulted in proving that the Sun's atmosphere contains hydrogen, among other elements (1862), and in 1868 he published his great map of the normal solar spectrum in *Recherches sur le spectre solaire*, including detailed measurements of more than 1000 spectral lines, which long remained authoritative in questions of wavelength, although his measurements were inexact by one part in 7000 or 8000, owing to the metre he used as a standard being slightly too short.

Ångström Solar Center - Lab

Cell and module fabrication Electrical and material characterization

Scribing / lamination ARC MgF₂ EG evaporation AI/Ni/AI (i-)ZnO(:AI) sputtering CBD CdS ALD (Cd-free) **CIGS** co-evaporation Inline 2 x Batch (+ MS control) **CIGS** sputtering **CZTS** sputtering NaF evaporation Mo sputtering

Ångström Solar Center - Goals

- CIGS solar cell ≥ 22 % efficiency (1-stage!)
 - − Cd-free alternative buffers \ge 20 %
- CZTS solar cell \geq 12 % efficiency
- Back contact passivation
- Electrical modeling
- Absorber layer formation
- Module energy yield modeling
 - Focus: northern climate

Part II - outline

- Standard CIGS solar cells
- PercIGS = PERC meets CIGS
- Al₂O₃ as CIGS surface passivation
- Al₂O₃ rear passivated CIGS solar cells
- Contacting approaches (3)
- Na optimization in rear passivated CIGS solar cells

Appl. Phys. Lett. (2012) DOI: 10.1063/1.3675849 Sol. Energy Mater. Sol. Cells (2013) DOI: 10.1016/j.solmat.2013.07.025 IEEE J. Photovoltaics (2013) DOI: 10.1109/JPHOTOV.2013.2287769 Prog. Photovolt: Res. Appl. (2014) DOI: 10.1002/pip.2527 Uppsala University MSc. Thesis (2014) ISSN: 1650-8300, UPTEC ES14 030 Phys. Status Solidi RRL (2014) DOI: 10.1002/pssr.201409387 IEEE J. Photovoltaics (2014) in press Thin Solid Films (2014) under review

Standard CIGS solar cells

• Back surface field (BSF) to passivate Mo/CIGS rear interface

- Highly recombinative $(1x10^4 \text{ cm/s} \le S_b \le 1x10^6 \text{ cm/s})$ and lowly reflective $(R_b < 60 \%)$
- Very comparable to AI BSF in standard Si solar cells

B. Vermang et al., Sol. Energy Mater. Sol. Cells (2013) DOI: 10.1016/j.solmat.2013.07.025

PercIGS = PERC meets CIGS

 Rear of Si PERC = a combination of an adequate rear surface passivation layer and micron-sized local point contacts

B. Vermang et al., Sol. Energy Mater. Sol. Cells (2013) DOI: 10.1016/j.solmat.2013.07.025

PercIGS = PERC meets CIGS

 PercIGS = a combination of an adequate rear surface passivation layer and nano-sized local point contacts

B. Vermang et al., Sol. Energy Mater. Sol. Cells (2013) DOI: 10.1016/j.solmat.2013.07.025

Perc**IGS**

• European project

Al₂O₃ as CIGS surface passivation

- Chemical passivation Low D_{it}
 - First principle calculations: 35 % reduction in D_{it} as compared to unpassivated CIGS surface

W.-W. Hsu, Appl. Phys. Lett. (2012) DOI: 10.1063/1.3675849

Al₂O₃ as CIGS surface passivation

- Field effect passivation $Q_f < 0$
 - $Q_f < 0$ positive shift in flat-band voltage (V_{FB}) a.f.o. Al₂O₃ thickness
 - $\Delta Q_f < 0$ positive shift in V_{FB} after annealing
 - Reduction in D_{it} steeper CV slope after annealing

J. Joel, Uppsala University MSc. Thesis (2014) ISSN: 1650-8300, UPTEC ES14 030

Al₂O₃ rear passivated CIGS solar cells

- Always increase in V_{oc} compared to unpassivated standard cells
- More obvious for ever thinner t_{CIGS}
- Rear surf. pass. very comparable as "PERC ↔ std. Si solar cell"

Al₂O₃ rear passivated CIGS solar cells

- Only increase in J_{SC} for ever thinner t_{CIGS}
- Still a loss in J_{sc} compared to thick standard CIGS solar cells
- Rear int. refl. & surf. pass. comparable as "PERC ↔ std. Si cell"

Contacting approach 1: CdS nano-particles + removal

- Deposit (chemical bath deposition = CBD) a particle-rich CdS layer on the Mo back contact
- 2. Deposit the surface passivation layer
 - DC-sputt. Al₂O₃ or evap. MgF₂/ALD-Al₂O₃
- 3. Remove the CdS nano-particles
 - B. Vermang et al., Sol. Energy Mater. Sol. Cells (2013) DOI: 10.1016/j.solmat.2013.07.025
 - B. Vermang et al., IEEE J. Photovoltaics (2013) DOI: 10.1109/JPHOTOV.2013.2287769
 - B. Vermang et al., Prog. Photovolt: Res. Appl. (2014) DOI: 10.1002/pip.2527

Contacting approach 1: CdS nano-particles + removal

- Particle diameter = 285 ± 30 nm
- Point opening diameter = 220 ± 25 nm
- High R_S, as the point contacting grids are only sub-optimized

B. Vermang et al., Sol. Energy Mater. Sol. Cells (2013) DOI: 10.1016/j.solmat.2013.07.025
B. Vermang et al., IEEE J. Photovoltaics (2013) DOI: 10.1109/JPHOTOV.2013.2287769
B. Vermang et al., Prog. Photovolt: Res. Appl. (2014) DOI: 10.1002/pip.2527

- Deposit Mo NP (formed by a plasma process) on the Mo back contact
- 2. Deposit the surface passivation layer
 - DC-sputt. Al_2O_3 (< 25 nm)

B. Vermang et al., Thin Solid Films (2014) under review

Contacting approach 2: Mo nano-particles

B. Vermang et al., Thin Solid Films (2014) under review

Contacting approach 2: Mo nano-particles

• STEM-EDX picture of a finished solar cell

B. Vermang et al., Thin Solid Films (2014) under review

Contacting approach 3: Electron beam lithography

Contacting approach 3: Electron beam lithography

- Optical microscopy top-view picture of an opened passivation layer
 - Well-structured grid

Contacting approach 3: Electron beam lithography

- SEM-EDX top-view picture of an opened passivation layer
 - Al₂O₃ etching is satisfactory

Optimization of Na in rear passivated CIGS solar cells

• "Curing" Na-deficient cells by applying electrical fields

B. Vermang et al., Phys. Status Solidi RRL (2014) DOI: 10.1002/pssr.201409387

PERC meets CIGS: PercIGS

Introduction of a rear surface passivation layer and nano-sized local contacts

Increase in V_{OC} , J_{SC} and FF for rear surface passivated ultra-thin CIGS solar cells compared to (unpassivated) standard ultra-thin CIGS solar cells

UPPSALA UNIVERSITET

- M. Edoff
- V. Fjällström
- C. Frisk
- C. Hägglund
- J. Joel
- J. Keller
- J. Larsen
- D. Ledinek
- J. Olsson
- F. Rostvall
- P. Szaniawski
- J.T. Wätjen
- U. Zimmermann
- Former:
- A. Hultqvist
- J. Pettersson
- G. Xindong

D. Flandre F. Henry R. Kotipalli

R. Gunnarsson U. Helmersson I. Pilch

INTERNATIONAL IBERIAN NANOTECHNOLOGY LABORATORY

- J. Borme
- S. Sadewasser
- P. Salomé

Thank you for your attention!

Vetenskapsrådet

